Loha, Chanchal and Gu, Sai and Wilde, Juray De and Mahanta, Pinakeswar and Chatterjee, Pradip K. (2014) Advances in mathematical modeling of fluidized bed gasification. Renewable and Sustainable Energy Reviews, 40. pp. 688-715. ISSN 1364-0321

Full text not available from this repository.


Gasification is the thermochemical conversion of solid fuel in to the gas which contains mainly hydrogen,carbon monoxide,carbondioxide,methaneandnitrogen.Ingasification, fluidized bed technology is widely used due to its various advantageous features which include high heat transfer,uniform and controllable temperature and favorable gas–solid contacting. Modeling and simulation of fluidized bed gasification is useful for optimizing the gasifier design and operation with minimal temporal and financial cost.The present work investigates the different modeling approaches applied to the fluidized bed gasification systems. These models are broadly classified as the equilibrium model and the rate based or kinetic model. On the other hand, depending on the description of the hydrodynamic of the bed, fluidized bed models may also be classified as the two-phase flow model, the Euler–Euler model and the Euler–Lagrange model. Mathematical formulation of each of the model mentioned above and their merits and demerits are discussed. Detail reviews of different model used by different researchers with major results obtained by them are presented while the special focus is given on Euler–Euler and Euler–Lagrange CFD models.

Item Type: Article
Subjects: Fludidised bed gasification
Depositing User: Dr. Sarita Ghosh
Date Deposited: 16 Feb 2016 09:06
Last Modified: 16 Feb 2016 09:06
URI: http://cmeri.csircentral.net/id/eprint/12

Actions (login required)

View Item View Item